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Relativistic quantum kinematics in the Moyal representation 
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Abstract. In this paper, we obtain the phase-space quantisation for relativistic spinning 
particles. The main tool is what we call a ‘Stratonovich-Weyl quantiser‘ which relates 
functions on phase space to operators on a suitable Hilbert space, and has the essential 
properties of covariance (under a group representation) and traciality. Our phase spaces 
are coadjoint orbits of the restricted Poincari group; we compute and explicitly coordinatise 
the orbits corresponding to massive particles, with or without spin. Some orbits correspond 
to unitary irreducible representations of the Poincare group; we show that there is a unique 
Stratonovich-Weyl quantiser from each of these phase spaces to operators on the corre- 
sponding representation spaces, and compute it explicitly. 

We develop the formalism by computing relativistic Wigner functions and twisted 
products for Klein-Gordon particles; these Wigner functions are supported on the mass 
shell. We thereby obtain an expression for the position probability density which is local, 
i.e. free from the difficulty of supraluminal propagation of the usual position probability 
density. It is shown explicitly how observables on phase space may be quantised; for 
example, we prove that the canonical position coordinate corresponds to the Newton- 
Wigner position operator, irrespective of spin. 

We show how relativistic phase-space quantisation applies to particles governed by 
the Dirac equation. In effect, we construct a Stratonovich- Weyl quantiser whose associated 
Hilbert space is the space of positive-energy solutions of the Dirac equation. 

1. Introduction 

The work of Moyal [ l ]  did much to clarify that the ‘Weyl correspondence’ [ 2 ]  and 
the ‘Wigner distribution’ [3] are elements of the fourth formulation-historically 
speaking-of non-relativistic quantum mechanics. The Moyal formulation has not 
had, by far, a success comparable to those of Heisenberg, Schrodinger or Feynman. 
Let us note, however, that the difficulty of extending it to cover spinning or relativistic 
particles was one of the reasons for that relative lack of success. 

We consider in this paper elementary systems. The phrase ‘elementary quantum 
system’ is usually taken to mean an irreducible (projective) representation of some 
invariance group of physical interest, such as the Galilei or PoincarC groups; the rays 
of the Hilbert space of the representation are taken as the states of the quantum system, 
and its observables are operators on this Hilbert space. The concept became firmly 
established following the landmark paper by Wigner [4] about the representations of 
the PoincarC group. 

In the Moyal formulation of quantum mechanics, a different point of view is 
adopted: both states and  observables are real functions (or generalised functions) on 
the classical phase space, and  expected values are computed, as in classical statistical 
physics, by averaging over the phase space. 
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To be precise, the rule for computing the expected values of an observable f in a 
state p remains the classical rule: 

where, in the ordinary case, M = R2“ and du is Lebesgue measure on R’“, n being the 
number of degrees of freedom of the system. 

Observables are composed via the non-commutative twisted product, since the 
classical pointwise product of observables is excluded by the uncertainty principle, 
which forbids localisation at a point of phase space. States are defined as the positive 
functionals of the twisted product algebra, i.e. p represents a state if 

J f x f ( u ) p ( u )  du 3 0  
M 

for any f: This is parallel to what is done in classical statistical mechanics, with the 
twisted product substituting for the ordinary product, but here the states no longer 
need to correspond to non-negative functions (since the twisted product of a function 
with its complex conjugate can take negative values). It turns out that Wigner distribu- 
tions are essentially the pure states of the twisted product algebra; and so, an intrinsically 
autonomous theory can be established, equivalent to, but independent of, conventional 
quantum mechanics. 

In this paper, we construct the Moyal representation of relativistic quantum theory. 
This arises out of a programme for the Moyal quantisation of general phase spaces. 
Although we want to consider here only the physically relevant problem of relativistic 
mechanics, some points of principle concerning this programme must be made. Its 
backbone is the same as that of the ‘geometric quantisation’ programme, namely the 
coadjoint orbit picture introduced by Kirillov, Kostant and Souriau [ 51. 

In modern renditions of classical mechanics, one considers a symplectic manifold 
M (or, more generally, a manifold with a Poisson bracket structure); the invariance 
group is a Lie group G acting on M by transformations which preserve this structure. 
We say we have an elementary classical system [6] if this action is transitive, i.e. if M 
is a homogeneous symplectic manifold ( H S M )  for the group G. 

The elementary systems whose invariance group is the given (connected) Lie group 
G appear in the conventional approach to quantum mechanics as projective unitary 
representations of G. It is convenient to find and to present the projective unitary 
representations of G as linear unitary representations of another group G which is a 
‘splitting group’ for G [7 ,8 ] ,  which we shall describe in more detail below. The 
connection with the classical framework arises from the work of Kirillov [ 5 ] ,  according 
to which there should be a correspondence between the unitary irreducible representa- 
tions of G and the orbits of the coadjoint action of G on the dual space of its Lie 
algebra. Experience suggests that not all coadjoint orbits are eligible, but only those 
which satisfy certain integrality conditions. (A simple formulation of integrality condi- 
tions is found in [ 9 ] . )  

The phase-space quantisation programme may be formulated as follows. Let G be 
the physical invariance group whose elementary systems we want to study. Construct 
the appropriate splitting group and assume that Kirillov’s paradigm works for G 
(this is the case for most invariance groups of physical interest). The orbits of the 
coadjoint action of G that are also HSM for G are the ‘phase spaces’. 
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At this point we part company with the outlook and techniques of geometric 
quantisation and we seek to extend Kirillov’s theory in a new direction. A Moyal 
quantum elementary system is a classical elementary system M plus a G-equivariant 
twisted product on spaces of functions on M ,  such that through (1) the physical 
expectations of the theory coincide with the ones on the Hilbert space of the representa- 
tion associated with M. In practice, one frequently knows beforehand the representa- 
tion theory of G, so that the simplest approach seems to be to link the coadjoint orbits 
of G directly with the operatorial theory, by means of an appropriate correspondence 
rule which yields the twisted product as the image of the usual composition of operators. 

The programme just outlined was carried out by two of us for the group SU(2), 
yielding the Moyal representation of spin, entirely equivalent to the conventional one, 
but with some interpretative and computational advantages [ 101. The ordinary Moyal 
theory was also reinterpreted as a theory of Galilean elementary systems in our sense 
and extended to particles with arbitrary spin [ 113. 

Section 2 serves as a guideline for the whole paper. We first deal with geometric 
preliminaries pertaining to Kirillov theory; this part, together with section 3, may be 
taken as a primer on coadjoint orbit techniques; we think these belong in the toolkit 
of every theoretical physicist. Thereafter we introduce the key concept of Stratonovich- 
Weyl quantiser, which gives the aforementioned link between the phase spaces and 
the operatorial theory on Hilbert spaces. Finally, we go through two important 
examples of its use. The results of the first example-concerning pure spin systems-are 
employed throughout the paper. In section 3 the coadjoint action for the PoincarC 
group is computed. Section 4 is the heart of the paper: here we derive the (unique) 
Stratonovich-Weyl quantiser for relativistic spinning particles in the Wigner realisation. 

Section 5 deals with the resulting Moyal formulation in the spinless (Klein-Gordon) 
case. In section 6 ,  the operators corresponding to several important phase-space 
observables are computed in the Wigner realisation, for any spin. Section 7 constructs 
the Stratonovich-Weyl quantiser for particles described by the Dirac equation. 

In the concluding section 8, we briefly review some recent attempts to derive 
‘relativistic Wigner functions’ or ‘relativistic Weyl transforms’ and compare the results 
with those of our group-theoretic approach. 

Throughout the paper, units of measure are taken so that h = 1 and c = 1. 

2. Phase-space quantisation in general 

2.1. Geometric preliminaries 

Let G be a connected Lie group, g its Lie algebra. If one wishes to determine the 
projective unitary representations of G, the classical method proposed by Bargmann 
[12] may be used. It employs a family of extensions of the covering group of G, and 
in general different extensions must be used for different projective unitary representa- 
tions. Some years ago, one of us [7] showed how this method could be improved, in 
the following sense: given G, a uniquely determined ‘splitting group’ G can be found 
such that all projective unitary representations of G can be lifted to unitary representa- 
tions of G. Actually, there exist in general several groups G’ and morphisms p : G’+ G 
such that every projective representation of G can be lifted to a unitary representation 
of G’ mapping the elements of k e r p  into multiples of the identity. The particular 
construction proposed in [7] is very easy to handle but may not be ‘minimal’: see [8]. 
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We recall that construction. Let H 2 ( g ,  R) = R" be the second cohomology group 
of g for the trivial representation of g on R. Then we consider the central extension 
g = R"@g, with appropriate commutation relations; the connected and  simply con- 
nected Lie group with Lie algebra fi is the splitting group. For details, see [7,8], where 
the somewhat inadequate name 'projective covering group' was used to refer to this 
'splitting group'. Therein it is proved that there is a homomorphism p : G + G such 
that each unitary representation of G mapping the kernel of p into the circle group 
U( 1) induces a projective unitary representation of G; and conversely, each projective 
unitary representation of G can be lifted to a unitary representation of G. If H ' ( g ,  R) = 
0, as happens for all semisimple groups, then reduces to the (universal) covering 
group 6 of G. Well known examples of covering groups in physics are SU(2),  which 
covers the rotation group, and SL(2, C), which covers the group of proper ortho- 
chronous Lorentz transformations. 

We recall that the adjoint representation of G is the map Ad : G + GL(g) defined by 

exp[t(Ad g ) X ]  = g(exp t X ) g - '  

for g E G, X E g ,  t E R. The coadjoint representation of G on g*, the dual space of g, is 
the contragredient of the adjoint representation, namely if (U, X ) : =  u ( X )  for u E g*, 
X E g ,  then 

((Coad g)u,  X ) : =  (U, (Ad g - ' ) X ) .  (2) 

This defines an action of G on g* and we will write g .  U := (Coad g ) u  to denote this 
coadjoint action. 

Every X E ~  defines a linear coordinate function lX on g* by & ( u ) : = ( u ,  X ) .  
Moreover, from ( 2 ) ,  we have & ( g .  U )  = [ , A d g - l ) , y ( ~ ) .  

The 'elementary classical systems' with invariance group G are connected 
homogeneous symplectic G-manifolds. It is known [13, 141 that these are, up  to a 
covering symplectomorphism, identifiable to orbits of an afine action A ,  of G on g*. 
The linear part of AB is always the coadjoint action of G; classification of these 
homogeneous G-spaces reduces thus to the classification of the inhomogeneous part 
8, which in turn is given by its cohomology class [e ]  in H ' ( G ;  g*) .  Note that with 
each element of H ' ( G ;  g*) we can associate an  element of H'(g,  R). 

Ideally, we would like to treat with coadjoint actions only, instead of affine actions, 
since the former are simple to describe and  easy to calculate. Martinez-Alonso [6] 
noticed that the splitting group could serve that purpose. Let M be a homogeneous 
symplectic G-space. The group G acts on M via the projection p through the G-action 
and so the kernel of g : G+ G acts identically on M ;  and conversely, the actions of 

on M for which ker p acts trivially correspond to actions of G on M. All the 
symplectic actions of G so considered are Poisson actions and therefore the HSM for 
G are simply orbits of the coadjoint action of C? on which the kernel of p : G + G acts 
identically; then the associated action of G on M is transitive (i.e. M is an elementary 
classical system for G), and  conversely. 

In  short, the classification of 'classical' and 'quantum' actions of a given group has 
a single unifying principle. 

We also recall that the coalgebra g* carries a natural G-invariant Poisson structure, 
which can be defined as follows. For any U E g*, the tangent space Tug* =g* ,  so if 
. f ~  C"(g*) we can regard (df),, : Tug* + R as an element df (u)  of g .  The Poisson bracket 
is then given by [15] 

(1; g I d u ) : = ( u ,  [ d f ( u ) ,  dg(u) l ) .  (3) 
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In particular, since d & (  u )  = X for X E g, we have 

Writing x, = tx ,  where the X ,  fill out a basis for g, we thus have from the Lie algebra 
commutation relations [x , ,  x,] = cOAxk: 

{ t x ,  SY)P(U) =(U, [ X ,  YI) = 5rx. Y ] ( U ) .  

It is worth noting that a G-invariant Poisson structure on g* is not necessarily 
unique. Another such structure is given by 

{f; g)p (u )  := If; g } p ( 4 - P ( d f ( u ) ,  d g ( u ) )  
where p is a 2-cocycle on g; this is essentially equivalent to (3) only if p is of the form 
p ( X ,  Y )  = a ( [ X ,  Y ] )  for some a ~ g * ,  that is, /3 is a coboundary. As hinted above, 
the multiplicity of Poisson structures on g* is thus classified by the cohomological 
properties of g. We remark that the Lie algebra of the Galilei group admits non-trivial 
2-cocycles [ 161, whereas that of the PoincarC group does not. In the former case, one 
may recover uniqueness of the invariant Poisson structure on the coalgebra by extending 
to the eleven-dimensional splitting group of which the Galilei group is a quotient; and  
the same procedure allows one to obtain projective representations of the Galilei group 
from linear representations. 

The natural symplectic structure on any orbit M of the coadjoint action can be 
obtained from the Poisson structure. Indeed, the orbits are the symplectic leaves of 
the natural Poisson structure defined in the coalgebra. If, for each X E g, k denotes 
the ‘fundamental vector field’ on g* given by 

d 
d t  

(2f) ( u := - f( exp( - tx . U ) 1 ,  ( 5 )  

then ( 2 t Y ) ( u )  = ( U ,  [ X ,  Y ] )  = { tx ,  t v }  3 p(u) .  The fields 2 are tangent to the orbit M ;  
if j :  M --* g* is the inclusion, then the symplectic 2-form o on M is given [ 171 by 

o ( j * k , j * ? ) ( u ) : = ( u ,  [ x ,  YI). (6) 
Here j*z, j ,  P are the fundamental vector fields of the action of G restricted to M. 
This symplectic structure is automatically G-invariant. By (6) the Poisson bracket 
associated with w on the orbit is simply the restriction of { . , . }p.  The associated 
volume form is a G-invariant measure on M (the Liouville measure); after a suitable 
normalisation, this measure will be denoted by A V ,  or simply by A, if a fixed orbit M 
is understood. 

2.2. The Stratonovich- Weyl correspondence 

The coadjoint orbits are connected with irreducible unitary representations of G by 
the Kirillov orbit method [ 5 , 9 ] .  Suppose then that we are given a connected Lie group 
G, a linear irreducible unitary representation U of G on a Hilbert space 2, and an  
associated coadjoint orbit M c g*. For instance, in the case of the Galilei and PoincarC 
groups, the equivalence classes of projective unitary irreducible representations and  
the coadjoint orbits which can be physically interpreted as massive particles are 
identically parametrised. We wish to define a generalisation of the Weyl correspon- 
dence [ 2 ]  which associated an  operator A on 2 to a (generalised) function W, on M 
in a linear one-to-one way; thus, we conjecture the existence of an  operator-valued 
kernel 0 : M -f {operators on X }  such that W,( U )  = Tr[AR( U)]. 
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The general requirements for such a kernel were first sketched in a remarkable 
paper by Stratonovich [18]. We condense them in the following definition. 

Dejnition. Let G be a Lie group and U a linear irreducible unitary representation of 
G on a Hilbert space 2%'. Let M be a symplectic homogeneous G-space and let A be 
a (suitably normalised) G-invariant measure on M. A Stratonouich- Weyl quantiser for 
the triple (G, U, M )  is a function a: M + {operators on X} which satisfies, for all U E M :  

(i)  O( U )  is self-adjoint ( 7 a )  

(ii) Tr[O( U)] = 1 (76)  

(iii) U ( g ) W u )  Uk-' = W g  * U )  for all g E G ( 7 c )  

( 7 d )  Tr[Q( u)O( u)]O( U )  dh ( U )  = O( U). 
(iv) JM 

The correspondence AH WA determined by (G, U, M,  0) is given by 

WA( U )  := Tr[AR( U)] .  (80) 
We finally require that 

(v)  AH WA be one-to-one. 

Let us write, provisionally, B = J M  WA( u)O( U )  dh ( U). Then ( 7 d )  gives 

WB(U) =Tr[a(u)B] = WA( U )  Tf[ f l (u )R(~) ]  dh(u)  

= Tr( A J O( U )  Tr[fl( u)n( U)] dh ( V )  = Tr[Afl( U ) ]  = WA( U )  
M 

and thus B = A. This gives the Stratonouich- Weyl correspondence inverting (8a) :  

A = I wA( U)O( U )  dh (U). 
M 

It is important to remark that the postulate ( 7 d )  thus implies that both directions (8) 
of the correspondence A ~t W, are implemented by the same kernel O ( u ) .  In  other 
words, our quantiser is the 'dequantiser' too. 

We have omitted to specify the exact conditions which guarantee convergence and 
free interchange of the various integrals and traces, preferring at this stage to illuminate 
the general scheme by physically relevant examples. For instance, for non-compact 
groups a(u) will not generally be trace-class, but ( 7 6 )  should hold in a weak sense. 

Now let us spell out the consequences of ( 7 )  for the Stratonovich-Weyl correspon- 
dence. Using (8a) ,  we obtain at once: 

( a )  

(6) 

A self-adjointa WA is real, and W A +  = w A  in general 

W, is the constant function 1 

( c )  W L f ( g l A f J ( g ) - ' ( g '  w A ( u ) .  
Furthermore, we have the tracial property of the correspondence: 

r 
( d )  J W A ( U ) W ~ ( U )  d h ( u )  =Tr[AB]. 

M 
( 9 )  

Indeed, using ( 8 a )  and (86), both sides of (9) are equal to Tr[A I,,,, O ( u )  W,(u)  dh(u)].  
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If  E denotes an appropriate function space on M, then (7d)  can be rephrased as 

( e )  (10) K (U, U )  := Tr[R( u)R(  U)] is the reproducing kernel for E. 

The twisted product f x g of two functions A g in E is defined by 

(fx h ) ( u )  = I, U u ,  0, w l f ( v ) h ( w )  dA(v) dA(w) 
M 

where L(u,  U, w )  remains to be determined. By definition, this should correspond 
the composition of operators on 2, i.e. we require that WA x WE = WAB for any A, 
From (8) we obtain 

( WA x WE)( U )  = WAB( U )  = Tr[R( u)AB] 

to 
B. 

Tr[R(u)Wu)R(w)l WA(~)WE(W) dA(u) dA(w) 

and we conclude that 

(f) 
product on M. 

Since W, = 1, it follows from (9) that 

L(u, U, w )  = Tr[R(u)R( o)O( w ) ]  is the trikernel for the twisted 

T r A = )  WA(u)dA(u) 
M 

which, together with (lo),  yields the tracial identity for the twisted product: 
6- 

on account of 

1, (fx h ) ( u )  dA(u) = IM IM [,f(v)Lc., U, w ) h ( w )  dA(u) dA(v) dA(w) 

= J, I, I , ~ f i . ) w * ( ~ ~ , , i . ~ ( u ) h ( w )  dA(u) dA(u) dA(w) 

= JM J M / ( u ) ~ ( a ,  w ) h ( w )  dA(u) dA(w) 

= [Mf(uM(r) dA(v). 

Comparing (11) and (12) with ( I ) ,  one sees that this twisted product does indeed 
comply with the classical rule for computing expected values of observables. It is 
apparent now that (9) or equivalently (10) or equivalently (12) is the key property for 
the equivalence of expected values calculated in the Moyal representation and those 
computed using the formulation in Hilbert space. The twisted product is automatically 
equivariant: 

( f x  h l g ( U )  = (fg x h g ) ( U )  for all g E G 

where fg( u )  :=f(g-’ U). 

We may now state more precisely what we mean by an ‘elementary quantum system’. 
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Definition. An elementary quantum system in the Moyal representation is a homogeneous 
symplectic G-manifold M ,  together with an  equivariant algebra of functions on M, 
where the algebra product satisfies the tracial identity ( 12). 

The definition is, in principle, fairly weak, in the sense that it leaves open the possibility 
of the existence of Moyal quantum systems not arrived at via a Stratonovich-Weyl 
correspondence. However, as far as we know, the availability of a Moyal representatiori 
for an elementary quantum system given in the conventional formulation by a pair 
(G, U )  depends on the existence of a sw quantiser a. In  section 4, we construct such 
a quantiser for the PoincarC group. 

The question of the uniqueness ( u p  to unitary equivalence) of the quantiser is 
obviously of importance. We claim at present no general results on uniqueness; 
however, in all the cases which have so far been examined (the Heisenberg groups, 
SU(2),  and  the massive orbits for the Galilei and PoincarC groups), the Stratonovich- 
Weyl quantiser is essentially unique. It is likely that there is a deep group-theoretic 
connection here. 

2.3. Example 1 :  pure spin systems 

Consider the group G = SU(2),  the invariance group for pure spins. Its coadjoint 
orbits, apart from the origin, are spheres (since SU(2) acts on g*r[W3 by rotations), 
and its irreducible unitary representations are the well known 2’, for j a half-integer. 
The integrality conditions select a discrete set of spheres in g* corresponding to the 
various ZJ. We identify all the spheres for convenience. For this case, the Stratonovich- 
Weyl quantiser has been determined by two of us [ l o ] ,  following the outline of 
Stratonovich [ 181. 

Z:5(n) l j s ) ( j r l  be 
the quantiser, with the matrix elements Z:, as yet undetermined. The covariance 
condition ( 7 c )  can be written as 

Let n be a point on the sphere of radius 1, and let A J ( n )  := 

[ m , ( d ) A J ] ( n )  := 2J(l?)A’(R-1n)9J(E)-1 = A J ( n )  

for l? E SU(2),  R being the corresponding rotation. The action m, of SU(2) has an  
easily determined set of fixed points: one obtains [ 101 that A’ = A:F$, where 

where the ( j l s ( r - s ) l j r )  are Clebsch-Gordan coefficients and the Y,, ,_ ,  are the usual 
spherical harmonics on the sphere. (The notation here corrects an  error in [ l o ] ;  in 
order to obtain correctly formulae (2.22) and (2.23) of that paper, the indices r and s 
must be permuted.) 

The A’ are Hermitian matrices ( 7 a )  only if the A{ are real. The reproducing kernel 
for the space of spherical harmonics of degree s 2 j  is 

if one adopts, as one must, 

2 j +  1 2 j + l  
477 4ir 

d h (  n )  = - dn =- sin 8 d 8  d 4  
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as the Liouville measure. One verified that the F: have the orthogonality property 

Tr [F i (m)F’ l (n ) l=  & I  Y / , , ( m )  P,,(n). 
,n = - I  

Now, using ( l o ) ,  the tracial condition ( 7 d )  gives ( A { ) ’ =  4 ~ / ( 2 j +  1). Since Tr(F’ , (n) )  = 
0 if I f 0, the condition ( 7  b )  yields also that A;) > 0. Hence we find 

A $ = *  - for I =  1 , 2 , .  . . ,2j. (14) (2J411)”’ 
A b =  - ( 2J41 1) ’ ‘ 

The sign ambiguities in (14) are the only measure of non-uniqueness in the sw quantiser 
A’. Physically, i t  makes sense to select all signs positive [lo]. Thus we finally arrive at 

(15) 

The twisted product of two functions f, g in the space spanned by the matrix 
The kernel A’ is the Stratonovich-Weyl quantiser for the j spin. 

elements Z:< is given by 

where L(n, m, k )  = Tr[AJ(n)AJ(m)AJ(k)]. The functions Z:s(n) have the orthogonality 
and  product properties: 

z:,(n)z:,,(n) dA(n)  = 6,,,6,, ZJry x z:, = S,,ZJ,, 1,: 
as may be verified directly. 

We have in particular the spin eigenstates: 

where the P, are the Legendre polynomials. If W,:=C’,=_, mZJ,, is the symbol 
associated with the Js spin operator, then 

By means of the quantiser (15) ,  the dynamics of spin was revisited in [ lo ]  and  Fourier 
analysis on SU(2) was recast in scalar form. Applications to special function theory 
are given in [19]. 

2.4. Example 2: non-relativistic elementary quantum systems 

One seeks the projective unitary irreducible representations of G = R4~(R’#SO(3)), 
the identity component of the Galilean group, acting on R4 by ( b ,  a, u, R )  : (x, t ) ~  
(Rr + ut + a, t + b) .  To obtain linear representations, one replaces G by its splitting 
group e [7], which is eleven-dimensional and  may be described as follows. Let g be 
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the Lie algebra generated by {H, P’, J ’ ,  K ’ ,  M} (for i = 1 , 2 , 3 )  with the commutation 
relations: 

[ J ’ ,  J’] = &I’dk [ J ’ ,  K ’ ]  = & l ’ k K h  [ J ’ ,  P’] = &“kPk 

[ K ‘) HI = P ’ [ K ’ ,  P’] = 8‘M 

with all other commutators zero. 
Elimination of the central element M gives the usual Galilean commutation relations 

for g, so that 3 is a central extension of g; letting be the connected and simply 
connected Lie group with Lie algebra 3, we have constructed as a central extension 
of the covering group 6 of G by R. Elements of G may be written as ( e , g ) =  
(exp(-BM),exp(-bH)exp(a.P+u.K)r?) with @ E R  and g = ( b , a ,  u , r ? ) ~ 6 .  The 
composition law of G obtained from the above commutation relations is 

( 0 ,  g )  (e ’ ,  8‘)  = ( e +  e ’ + w ( g ,  g ’ ) ,  gg’ )  

where w ( g ,  g ‘ )  = i ( - b ’ u -  R u ’ - u .  R a ’ + a .  Ru’)  is the factor system. As before, r? E 

SU(2) and R is the SO(3) element by which r? acts on R3. 
The unitary irreducible representations of G which interest us may be obtained by 

the induced representation method and act on the momentum space X’ = L2(R3, d35) 0 
C2’+’, where j is a half-integer number, by 

[ u m u , ( e ,  b, a, 0, d ) ~ 1 ( 5 )  

where 9’ is the unitary irreducible representation of SU(2) on C2’+l. 
have been described in [6] and may be obtained as 

follows. One first computes the adjoint action of G on the generators H, P, J, K,  M 
of ij; denoting the coordinates on Q* by h = &, p = tP, j = &, k = &, m = &, which 
transform according to Ad( g - ’ ) ,  one finds (8,  b, a, U, R )  ( h ,  p ,  j ,  k, m )  explicitly. (We 
carry out the analogous calculation for the Poincari group in detail in the next section.) 
Three invariant quantities appear: m itself, U = 2mh - IpI2 and Imj+p x k /* ;  these are 
the ‘Casimir functions’ for the canonical Poisson structure of the coalgebra of G, which 
are constant on the maximal-dimensional orbits, which thus have dimension 8. 

Fix m > 0 and U E R; fix also s = l j  + ( l / m ) p  x kl; then one obtains a coadjoint orbit 
Omus on which one may introduce coordinates q : =  k / m , p ,  and if s>O, s:= 
j + ( l / m ) p  x k. The coadjoint action of G on Omus reduces to [6] 

The coadjoint orbits of 

(e ,  b ,a ,  u , d ) . ( q , p , s ) =  + a + b u ,  R p - m u ,  Rs ) . (17) 

It can be checked that (4) reduces to 

From (17) and (18) it is clear that Omus is isomorphic to R 6 x S 2  as a symplectic 
manifold, if s > 0, and that DmuO is symplectically isomorphic to R6, with canonical 
coordinates (4 ,  p ) .  We interpret Omus as the elementary classical non-relativistic particle 
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of mass m, spin s and internal energy U (for most practical purposes, U can be taken 
to be zero). 

We now take up the question of quantisation. For massive spinless Galileanparticles, 
the appropriate triple is (G, U,,,,,, Om,,,) where m > 0. The desired quantiser is given 
by the Grossmann-Royer reflection operators [ 11,201: 

acting on X= L'(R3, d35).  These operators are self-adjoint and satisfy 
[ W q ,  P ) @ I ( ~ )  := 23 exp[2iq * (P - ~)IcWP - 5) 

Tr[ll(q, PI1 = 1 

UmOo(g)n(q, P) U m o o ( g ) - '  =n(g 

Tr[JJ(q, P ) W 4 ' ,  p')l= ( 2 d 3 s ( q  - q"p -P')* 
Moreover, it is readily checked, using (16) and (17), that 

(4 ,  P)). 
(In fact, this holds for g belonging to a much larger group than the Galilei group 
[21].) Thus, if dh (q, p )  := ( 2 ~ ) - ~  d3q d3p, then ll satisfies (7) and so is a quantiser. As 
was first noticed by Grossmann and Royer, formula (86) with the present Stratonovich- 
Weyl kernel and Liouville measure, is equivalent to the old Weyl correspondence rule. 
We recall the formula for the Wigner functions: 

W,(q, p )  := (@ll-I(q, p ) l @ )  = 23 & ( q  + u ) & ( q  - u )  exp(2ip * U) d3u (19) 

where 6 denotes the Fourier transform. 
Finally, in order to quantise massive Galilean particles with spin, we may consider 

the triple (G, U,,,,,, OmOs) with j > O  a half-integer. It is shown in [ l l] ,  and can be 
verified directly from the preceding paragraphs, that f l , (q ,  p ,  n) := n(q, p)@A'( n), 
acting on XJ = L2(R3,  d35)@C2'", satisfies the properties (7), and thus provides a 
Stratonovich- Weyl quantiser for Galilean spinning particles. 

3. Relativistic classical elementary systems 

In this section, we describe coadjoint orbits for the PoincarC group 9. As usual, M4 
denotes Minkowski space, and if x =  ( x o , x ) ,  y =  ( y o , , )  are 4-vectors in M4, their 
Lorentz product is denoted ( x y )  = -xoyo  + x * y .  

The group 9 is the semidirect product T 4 ~ Y  where Y is the Lorentz group and 

The identity component is Po= T4K2'\ = T4KS00(3, l ) ,  the proper orthochronous 
PoincarC group; and in order to assure that only linear representations need be 
considered, we will work with its splitting group; this turns out to be just the simply 
connected double cover 8, = T4KSL(2, e) ,  which does not have non-trivial extensions. 

If A E SL(2, C), let A be its natural image in S 0 , ( 3 ,  1): let X := xoZ + x U for x E T4,  
where U = ( U ' ,  U', u3)  is the set of Pauli matrices in C2x2, be the corresponding 
Hermitian matrix in @ 2 x 2 ;  then Ax is the 4-vector corresponding to AXA' .  The product 
in go obeys 

(20) 
The Lie algebra of @, (or of 9, or 9) is generated by ten elements H, P i ,  J ' ,  K 

(for i = 1,2,3)  corresponding, respectively, ,to time translations, space translations, 
rotations and pure boosts. Any element of 9, may be written in the standard form 

(21) 

( a ,  A )  ( a ' ,  A') = ( a  + Aa',  AA') for a E T4,  A E  9. 

( a ,  A') ( a ' ,  A') = ( a  + Aa',  AAf)  for a E T ~ ,  AE S L ( ~ ,  e).  

g = exp( -aoH + a - P )  exp(ln - K )  exp(am J )  
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where a E T4, U and m are unit 3-vectors, 5 2 0 and 0 s  a S 2n, with the convention 
that exp(2mn - J )  = - I  in SL(2, C )  for all m. 

[ J ' ,  J ' ]  = & " h J h  

[ K ' ,  K J ] = - & " L J h  [ K ' ,  P ' ] = S " H  [ K ' ,  H I  = P '  

as may be verified directly from (20) together with: 

The commutation relations for the generators are 

[ J ' ,  K ' ] = E " ~ K ~  [ J' ,  P ' ]  = &IJhPi 

exp(5n * K )  = cosh45 + sinhiln U 

exp( a m  J )  = cos ia  - i s iniam . U. 
The adjoint action of 8, on its Lie algebra g may be computed as fol.dws. Writing 

(ad X )  Y := [ X ,  Y ]  for X ,  Y E  g, we have 

(23) 
1 

Ad(exp X )  Y = ( e d d X  ) Y = Y + [ X ,  Y ]  +- [ X ,  [ X ,  Y ] ]  +. . . . 
2! 

From (23) it is easy to obtain (Ad(exp X ) )  Y whenever X = - a o H ,  a - P, a m  J or  
5n - K ,  and Y = H, P' ,  J '  or  K ' .  For instance, if X = ( n  K,  Y = H, then 

Ad(exp(5n - K ) ) H  
Y Z  "3 
4 4 
2! 3! 

= H + {[ n . K, HI + - [ n e  K, [ n - K ,  H I ]  + - [ n K, [n * K ,  [n * K,  HI11 + . . 

5' 5' 
= H + j n .  P + -  H + y  n - P + .  . . = ( c o s h  J ) H + ( s i n h  {)n P. 

In this way we obtain table 1, which, together with (21), exhibits the adjoint action of 
Bo in a fully explicit manner. (We use the notation A = R,,, for the rotation obtained 
from ,i = exp(am J )  E S U ( ~ ) . )  

The coadjoint action of go on g* can now be derived immediately. Let h be the 
linear coordinate on g* associated with H, and similarly let p ' ,  j ' ,  k'  be the coordinates 
associated to P ' ,  J ' ,  K '  ( i  = 1,2,3) .  The coadjoint action is given in these coordinates 
by table 2. 

2 !  3 .  

Table 1. The adjoint action Ad(exp X )  Y. 

X - a o H  a . P  a m .  J in . K 

H H H H (cosh 5 ) H  +(sinh 5 ) n .  P 
P P P R , P  P + (sinh i ) n H  + (cosh i - 1 I (  n . P ) n  
J J J - a x P  R;!,,J ( c o s h i ) J - ( s i n h [ ) n ~ K - ( c o s h i - l ) ( n . J ) n  
K K + aoP K - a H  R,,!K (cosh i ) K  +(sinh [)n x J - ( c o s h  i -  l ) ( n .  K ) n  

Table 2. The coadjoint action Coad(exp X ) y  

X -aoH a . P  a m . J  i n .  K 
~~~ ~ 

h h h h (cosh i ) h  - (sinh {)n p 
P P P R o d  p -(sinh [ ( n h  +(cosh i- l ) ( n  * p ) n  
i i j + a  x p  R d  (cosh i ) j + ( s i n h  i)n x k - (cosh 5-  l ) ( n .  j ) n  
k k - aop  k + a h  R, ,J  (cosh [)k-(s inh i ) n  x j - (cosh 5 -  l ) ( n .  k)n 
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The orbits arise from systems of differential equations gf=O, where 2 is the 
fundamental vector field ( 5 ) ,  and X runs over a basis of g. Due to the commutation 
relations ( 2 2 ) ,  this yields an involutive system of differential equations, and the 
coadjoint orbits are the integral manifolds given by the Stefan-Sussmann generalisation 
of the Frobenius theorem [ 141. Explicitly, for f =f( h, p ,  j ,  k ) ,  we have 

af af 
aJ ak 

PX,+ h-=O P‘-= a f  0 
ak 

a f  a f  a f  p X-+ j x ; +  k x-=  0 
ap dJ ak 

a f  af a f  a f  
ah a p  aj ak 

p - + h - - k x - + j x - = O .  

In principle, we have to solve these differential equations to find the orbits. In  the 
present case, this system of equations, while not of constant rank, is generically of 
rank 8, so that the maximal-dimensional orbits arise as level sets of two ‘Casimir 
functions’ C , ,  C2 ong*. These Casimir functions are easy to guess from other treatments 
and  to obtain explicitly. Let p = ( h ,  p )  be the ‘energy-momentum’ 4-vector and  let 
w = ( W O ,  w )  be the Pauli-Lubanski 4-vector given by 

w o = j . p  w = p  x k +  hj. (24) 

From table 2 one verifies that wo transforms like h and w like p under the coadjoint 
action; in particular, under Coad(exp(5n K ) ) :  

wo-(cosh 5)wo-(sinh 5)n. w 

w -  w -(sinh l ) w 0 n  +(cosh 5- l ) ( n .  w ) n .  

Thus the Casimir functions we seek are 

C l : = ( p p ) = - h 2 + p . p  

Cz:= (ww) = -( j .  p ) ’ +  Ip x k + hj12. 

The next step is to find a suitable set of coordinates on a particular orbit. We shall 
now restrict ourselves to orbits for which C ,  < 0, and write C ,  = - m 2  with m > 0, in 
order to deal with massive particles only. (It  is clear that the other orbits correspond 
to the zero-mass and  tachyon cases. For a classfication of orbits and  an  early view on 
the subject, see [ 2 2 ] . )  They further subdivide according to whether h = ( m 2 + p . p ) ” 2  
or  h = -(m’+p.p)’’’ . For convenience, we restrict for the moment to the positive- 
energy orbits: h > 0. 

Let H L  denote the forward hyperboloid (xx) = -m2,  xo> 0,  and let K := (m ,  0 )  be 
its vertex. let L, denote the Lorentz boost which takes K to p .  We identify L, with 
the boost B ( 5 n )  := exp(5n K )  in Po, where 

By a slight abuse of notation, we also identify L, with the element 

h i m - 0 . a  
[ 2 m ( h  + m)]”‘ 
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of go. If a is a 4-vector, we thus have 
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P '  a L,a = , a + - p +  

Let us also write p for the image of p under spatial reflection: p := ( h ,  - p ) .  Then, 
since L,p = K ,  it follows from (26) that 

L,a = L,d. 
- 

,r-' = L .  

From the definition (24), p and w are orthogonal: ( p w )  = 0, and so 

0 = ( P W )  = (L,pLp W )  = ( K L p  W )  

which means that 

L,w = (0, ms)  

for some 3-vector s. Since 

C2 = (ww) = (L,wL,w) = m21s12 

is constant on any orbit, we may interpret s as a 'spin' vector. 
From (0, ms)  = Low, (26) yields 

w wop 
) P = , -  m ( m + h ) '  m m m m ( m + h )  

s=--- -- 

We write, as usual, s = / S I  (not a 4-vector!) to denote the spin modulus. 
For fixed m and s and positive h, we obtain a single orbit Om,+. If s > 0, we may 

take as coordinates on B,,, the 'momenta' p l ,  p', p 3  and two spherical coordinates 
arising from s; three coordinates remain to be determined. A possible choice is q ' ,  
q2,  q3, where 

k p x s  q : = - -  p x w  =-- 
h m h ( m + h )  h h ( m + h ) '  

The set (q,  p ,  s), where s = Is1 > 0 is fixed, gives a system of eight coordinates on 
the orbit Om,+. Here p ranges over R', s/s over the sphere S2 and, for fixed p and s, 
q ranges over R3. So the coadjoint orbit Om,+ is homeomorphic to R6 x S', as in the 
Galilean case. 

The Poisson structure on the relevant submanifold of g* may be obtained from (4) 
and (22), where we use the basis {h ,  p ' ,  j ' ,  k ' :  i = 1 ,2 ,3}  of coordinate functions on g*. 
Using (24) and (281, the Poisson brackets for the Om,+ coordinate functions are readily 
obtained. For instance, 

{ P I ,  P ' I P ' O  

{PI, W"P 
1 
m m ( m + h )  { P I ,  S ' I P  =- I P ' ,  w'lp- 
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1 
h 

- _  - ( - 6 ” h )  = -8”. 

The Poisson brackets of the q’ and s ’  are similarly computed; the full results are 

{ q l ,  q’ }P=IP’ ,p l )P=o  {q ’ ,  d}p= 6”  

{qi ,  s ’ }P={P’ ,  s’)p=O {s’, E ‘ J k S k ,  

Thus we see that { q ’ ,  p ’ }  are (part of a set of) canonical coordinates, and that, just 
as in the Galilean case, Om,+ is isomorphic to R6 x S2 as a symplectic manifold, if s > 0. 
It follows that d3qd3pds is a Liouville measure on Om,+. The case s = O  gives a 
six-dimensional orbit OmO+, isomorphic to R6. 

It is useful to have at hand the expressions of the g* coordinates (h ,  p ,  j ,  k )  over 
the orbit in terms of the Om,+ coordinates (q ,  p ,  s). Inverting (24), (28) and (29) yields 

wO=p*  s P * S  
m + h P  

w = m s + -  

P X S  j = q x p + s  k = h q + -  
m + h  

as functions on Om,+. 
Finally, we could recover from table 2 the expression of the coadjoint action of 

go on Oms+ in terms of the coordinates (q ,  p ,  s ) .  From (28) and (29) we readily obtain 

exp(a * P )  * (4 ,  P, s)  = ( 4  + 4, P, s) 

exp(am * J )  * (q ,  P, S )  = (Remq, Ramp, Rmms) 

(30) 

These formulae conform to our ‘intuition’ as to how a relativistic particle should behave. 
The effect of the boost is more cumbersome to express. First we note that it acts 

on the spin coordinates by a rotation. Indeed, if s-s‘, W H W ’  under the boost 
B =exp(ln - K ) ,  then ( 2 7 )  gives (0, ms’)  = L i i w ’ =  L i jBw = Li jBLp(O,  ms) ,  so that 
S I =  Rs where R = LiLBL, is the ‘Wigner rotation’ corresponding to B and p .  

From (25) and (26) we derive the explicit expression 

(1  -cos p ) ( n  x p )  * s sin p 
s ’ = ( c o s P ) s +  n x p - -  l n x p ,  ( n x p ) x s  

lnxp12 

which is a rotation with axis n x p  and angle p, where 

cos p = 1 - 

with A’:= (cosh 5)h  - (sinh 5 ) n  p ,  as in table 2. This coincides with the transformation 
formula derived previously by Sudarshan and Mukunda [23]. Note in particular that, 
whenever p = 0, the Wigner rotation reduces to the identity and s‘ = s. 

(cosh 5 - l) ln xpl’  
( m  + h ) ( m  + h’) 

-sinh l ( m  + h )  + (cosh 5 -  1)n * p  
( m +  h ) ( m + h ‘ ) l n  xpI  

sin p = 
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To see how the boost acts on the position coordinates, let us temporarily suppress 
s and write ( q ,  p )  as coordinates for the orbit e,,, . Let us write 

(4,  p ’ )  := exp(5n 9 K )  * (q ,  p ) .  

Then 

p ‘ = p - ( s i n h  J )hn+(cosh  5 -  l ) ( n . p ) n  

as in table 2; again with h‘:= (cosh 5 ) h  -(sinh 5 ) n  ‘ p ,  we obtain 

Formula (31) corresponds to a covariant transformation of the position coordinate, 
in the following precise sense: it gives the rule of transformation of the initial conditions 
(for free motion) on changing from one Lorentz frame (with unprimed coordinates) 
to another (with primed coordinates). Write 

P‘ 
h 

q’(  t ’ )  := q’+: t’ 

and substitute the preceding formulae for q’ ,  p ’ ,  t‘ together with 

t’:= t cosh l - ( s i n h  < ) q ( t ) .  n. 

q’ ( t ’ )=q( t ) - r ( s inh  S )n+(cosh  L - l ) ( n . q ( t ) ) n  (34) 

(33) 

Using q (  t )  = q + ( p /  h ) t  to eliminate q in the result, one finally obtains 

stipulating that ( t ,  q (  t ) )  transforms under boosts like a 4-vector. Conversely, starting 
from (33) and  (34) and the free motion conditions, one eliminates t and t‘ from the 
formulation and  recovers (3 1). To repeat, this last formula does not relate two different 
coordinations of the same set of events but rather two simultaneity hyperplanes; and, 
as such, it is the expression of the Lorentz covariance under boosts in a formulation 
in which time has been eliminated; canonical transformations can be considered as 
transformations of the initial conditions of a covariant formulation. The same point 
has been made convincingly in the field theory context [24]. One could consider the 
following double bundle: 

where the manifold B = @,/SU(2) = R7 has the global coordinates ( f ,  b, p )  so that 
T, (  t, b, p )  = ( b  - tp/  h, p )  and  r2( I, b, p )  = ( t ,  b ) .  On B the PoincarC group acts in the 
natural manner; by quotienting over the fibres we recover the formulae of the coadjoint 
action. Physically, B represents the set of trajectories of free particles with initial 
conditions given by the points of em,+. 

Now we turn to the general case of non-zero spin. The transformation formula of 
q under boosts is an involved expression with spin-dependent terms. Thus we seek to 
replace q by another set of position coordinates (at the price of losing the canonical 
property, of course). It is better to work at the infinitesimal level: we look for a new 
set of coordinates x = (x’ ,  x2, x3) on the orbit Om,+ such that 

{ k ’ ,  x’}p = -x ’v’  ( i , j  = 1 ,2 ,3 )  (35) 
where U’ := {x’, h } p = p ’ / h .  This is but the infinitesimal form of (31). This equality 
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does not hold for x = q when s # 0. Introduce, however, 
k p x s  P X S  . := - -- = 
h mh ' - m ( m  + h )  

Then one easily finds that (35) is verified. A straightforward but tedious computation 
then allows one to check that x transforms under boosts as desired: 

sinh 5 (cosh c -  1)h 
(n * x)n. 

h' 
x ' =  x+- (n * x ) p  - 

h 
We will use x instead of q for labelling the R-kernel in the next section; some 
simplification is thereby effected. The fortunate fact here is that d3xd3pds is still a 
Liouville measure on Om,+. 

We summarise the coadjoint action of @o on the orbit Om,, in table 3. 
The existence of the covariant position vector x and its distinction from the canonical 

position vector q were noticed by Pauri and Prosperi [ 2 5 ]  and Bel and Martln [26]. 
The latter obtained the coadjoint action (without the name) by studying the transforma- 
tion of the initial conditions for PoicarC-invariant systems of second-order differential 
equations. The characterisations of [ 2 5 , 2 6 ]  are, in principle, only local, whereas ours 
is global; but this is a moot point here. Neglect of these simple facts has obscured 
the parallel discussion on relativistic 'position operators'; we return to that question 
later. 

Table 3. The coadjoint action Coad(exp X)(x,p,  s )  

X -aoH a .  P am.J i n  K 

ao 
X x--p x + a  

h 
sinh i (cosh c -  1 ) h  

x+- ( n  x ) p  - ( n . x ) n  
h h' R , d  

S S S 

4. Construction of the Stratonovich-Weyl quantiser 

The unitary irreducible representations of the PoincarC group are constructed by the 
induced representation method. Since @,, = T4M SL(2, C ) ,  the representation space may 
be realised as a (multicomponent) function space on an orbit of SL(2, C )  in the dual 
space of T4.  Again we restrict consideration to orbits H ;  corresponding to massive 
particles of positive energy: 6 = (to, 5 )  E H L  iff ((5) = - m 2  and eo> 0. The correspond- 
ing representations are given by [4,27] 

where LF'AL , - i t  E SU(2) is a 'Wigner rotation'. In  the case = L,, we shall denote 
the Wigner rotation by R ( p ,  6) = L;'L,,LL;l,. Thusj  is a half-integer and the representa- 
tion space is X i +  = C2'+' 0 L2( H i ,  d F  (e)), where p is the Lorentz-invariant measure: 
d p ( & ) : =  d35/.f0. 

The coadjoint orbits corresponding to these representations are C,,+ , with the same 
m and corresponding discrete values of spin. To reduce notational clutter, we fix m > 0 
and a half-integerj, and write simply RI, U,, C, rather than Xk', U,,, and 0"". We 

[ U,,,+( a, A)@]( 6) = exp[ -i( a t ) ] 9 ' (  L; ' , iL , - ic)@(A-'e)  
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will identify the sphere of radius s with the unit sphere if s>O, and use coordinates 
( x , p ,  n )  on the orbit C,. 

We are now ready to introduce the Stratonovich-Weyl quantiser satisfying ( 7 ) .  The 
measure on C, will be of the form dh,(x, p ,  n )  := C, d3x d 7 p  dn  = C,d'q d3p d n ;  the 
precise value of the constant C, must be determined in the process. 

A suitable family of kets for 2P is (16, r ) :  ( E  H i ,  r = -J, - j+  1,. . , , J } ,  subject to 
the closure relation: 

i 1 15, r ) (5 ,  rl d P ( S )  = I 
r = - i  H:, 

and the corresponding orthogonality properties: 

(5, r l t ' ,  r') = t06,, S ( 5 -  5'). 
Traces of operators on 2' are then computed as 

T r A =  f: (6 4 4 5 ,  r )  d P ( 5 ) .  
r = - J  HT, 

Before deriving the sw quantiser, it is useful to establish a few notational conven- 
tions. We will write, for p ,  t~ M 4 ,  

In  particular, { p p }  = 1 and  {KO = to/ m. Moreover, we define the hyperbolic reflection 

Mp5 := 2 I P 5 ) P  - 5: 
M p  is an (improper) Lorentz transformation, M p ( M p t )  = 6, M,,p = p and ( p M p t )  = ( y t ) .  
Moreover, MK[ = We shall write Mp5 for the 3-vector component of Mp& Further- 
more, if .I is any Lorentz transformation, then .IMpA4-' = M , p .  Finally, note the 
relation M& = L,L,,Z 

Theorem. The unique Stratonovich-Weyl quantiser R, for the triple (go, U,, 0,) is 
given by 

ProoJ: We must verify that this definition and no  other satifies the properties ( 7 ) .  
First we note that (7c) defines a transitive system of covariance; such a system is 

determined by specifying an  operator R,( uo) which commutes with the representatives 
U,(g) of the isotropy group of uo.  We take uo = ( O , O ,  no) .  Somewhat more generally, 
it is necessary and sufficient to establish (7c)  for some subgroup which contains the 
isotropy subgroup of uo.  

To this end, we abbreviate R,(n) = R,(O, 0 ; n )  and consider the subgroup of @o 
generated by SU(2) and the time translations. We assume j > 0. For I? E SU(2),  we 
require R, to satisfy 
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Since q ( d ) =  9 Y ( d ) @ A ( d ) ,  where A is the left regular representation of SU(2) on 
L 2 ( H L ,  d F ) ,  any operator fixed by M,(SU(2)) is of the form 

where {FJ,, . . . , F;,} generate the fixed points (13) of mJ(SU(2)), the A: are constants 
given by (14), and P: are operators on L*(H; ,  d p )  such that 

(R51P:IR5’) = (5lp:15’) for all E E S U ( ~ ) .  

Furthermore, each P: must commute with the representatives of the time translations, 
so that 

(51p:15’) = ~(lf12-15’12)k:(f, 5’ ) .  (38) 

We turn now to the tracial condition (7d) .  We first observe that, on account of 

(39) 

(7c),  we can write 

nJ(x, P, n )  = U( T.1 U(L,)n,(n) U(LJ1 U( 

(x, P, n) = T* (0, P, n 1 = ( TJ,) * (090, n )  

where T, denotes the space translation exp(x. P ) .  Indeed, it suffices to note that 

which follows from table 3. 

two points of the orbit O,, simplifies to 
From (39), the trace Tr[R,(u)Q,( U ) ] ,  where U = (x, p, n )  and v = (x’, p’, n ‘ )  are any 

Tr[R,(x, P, n)R,(x’, P’, n’)I 

=Tr[U(T,)R,(O,p, n)U(T-,)U(T*)n,co,P’,  n’ )U(T- ,  11 
= Tr[R,(x -XI, p ,  n) f l , (O ,  p’, n ’ ) ] .  (40) 

Thus we can take U = (0, p’, n ’ )  without loss of generality. Since the T, and the L, do 
not commute, no further simplification is possible. 

Taking account of (40), the tracial condition can now be written as 

Tr[R,(x, p, n ) n , ( O , p ’ ,  n’)] = C’6(x )6 (p  -p’)K’(n, n ’ )  

where CJ := (2 j+  1)/4.?rC,. The left-hand side of (41)  can be expanded 
. r r  

(41) 

as 
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with P denoting the parity operator I&)-It). The normalisation condition ( 7 b ) ,  
together with Tr 1 = +a, demands that &(to) = 0. Hence 

2’ 

/ = 0  
S Z , ~  = A : F : ( ~ ) o ~ ~ ~ : ( ~ ~ ) P  

where we have renormalised the f: for convenience; by ( 7 a ) ,  each f: must be a real 
function. 

Thus we can write 

[fl,(x,P, ~)@.](~)=[U(T~)U(LP)~,(~)U(L,)U(T-,)@](~) 
2’ 

Thus the functions (f$)> coincide for 1 = 0, 1 , .  . . , 2 j .  Since 

and since ( 7 b )  now gives fb( m )  = 1, we conclude that f j ( 5 ” )  = ([“/m)’  for all 1 and 
that C’ = ( 2 ~ ) ~  for all j .  Substituting f:( m { p ( } )  = { p t } ’  ’ in ( 4 2 )  gives the desired 
result ( 3 6 ) .  

It remains to check that ( 7 a )  holds; by the established covariance, we need only 
check that f l , ( n )  is seif-adjoint. Since [ f l , ( n ) @ ] ( 5 )  =27(,$“‘m)3 ‘A’ (n)@(c) ,  it  is clear 
from the invariance of the measure d p ( 5 )  under 5-4 that n , ( n )  is symmetric. It has 
moreover a bounded inverse, and  hence is a self-adjoint operator. 
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The Liouville measure on @; should thus be normalised to 

d3xd3p 2 j  + 1 
d A ( x , p , n ) = y -  dn  for j > 0. 

(27l) 471 

For the c a s e j  = 0, where x = q, the proof is similar (indeed simpler) and the correspond- 
ing Liouville measure is just dh  (q ,  p )  := ( 2 ~ ) - ~  d3q d3p. 

Remark. The sw quantiser is given uniquely by the formula (36 ) ,  but there is the 
residual ambiguity in the SU(2) quantiser A’, as the signs of the A’, , . . . , A i ,  may be 
chosen freely in (14). We will keep our choice of only positive A: and  will continue 
to speak, with a slight abuse of language, of a ‘unique’ Stratonovich-Weyl quantiser 
in the PoincarC group case. 

5. The phase-space formalism for Klein-Gordon particles 

There is a remarkable dichotomy in relativistic quantum theory between the presentation 
of elementary systems by means of unitary irreducible representations of the PoincarC 
group and  their presentation by means of covariant ‘wave’ equations of various sorts. 
The objects associated with the latter were historically introduced first, and  are easier 
to handle because of their manifest covariance properties; also, they lend themselves 
to the introduction of interactions. On the other hand, the theory of unitary irreducible 
representations, introduced by Wigner [4] for reasons of principle, treats all the particles 
in a unified way, allowing a more systematic classification. 

In practice, this state of affairs indicates that we have by no  means finished our 
task. The relation between the ‘Wigner’ and  ‘covariant’ approaches is by now well 
understood. One must adapt the Stratonovich-Weyl construct to the more usual context 
of wave equations; of course, the new families of Stratonovich-Weyl operators will 
be essentially equivalent to that given by ( 3 6 ) .  We carry out this adaptation in section 
7 for the case of spin-half particles; meanwhile, in order to gain familiarity with the 
phase-space formalism, it will be useful to treat the case of spinless particles, where 
the dichotomy becomes vacuous. In  this case the representation space becomes 
L2(H”, ,  d p (  t ) ) ,  which may be immediately identified with the momentum wavefunction 
space. 

The ( q , p )  labelling of observables and states can be considered phase-space 
coordinates for any Lorentzian observer; by construction the formalism is invariant, 
although not in a manifest way. 

Now suppose that we have a state prepared at t = 0 in the configuration po(q, p )  = 
p o ( u ) .  Its free evolution is given by the classical formula: 
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with U denoting the velocity p / h ;  and the expected value of the observable f in the 
state p is 

wPt = uT)-3  i,. p , ( q ,  P m ,  P) d3q d3p. 

As p,(q, p )  d3q d3p = ( 2 ~ ) ~ ,  this is the promised ( l ) !  
The inherent simplicity of these fomulae lies in the fact that there is no need to 

‘quantise’ A i.e. to express it in operatorial form, a hopeless task in general. In this 
sense, phase space quantisation is an ab initio quantisation. 

Not every configuration po qualifies as a state, however. The more important states 
are the Wigner functions: 

W d q ,  P) := ( @ l . R o ( a  P)l@.) 
r 

Note that W, x W, = W,. Thus it is clear from (12) that we have 

so W, qu.alifies as a state. The simplest example is the ‘plane wave’ Q k ( 5 )  = k o S ( f  - k ) .  
Substituting in (45) we get 

W @ , ( q , ~ ) = 2 ~  lR3 { ~ t I ~ ’ ~ e x p [ i q -  ( M p ~ - 5 ) l ~ ( f - ~ ) ~ ( M p ~ - ~ ) ( k o ) 2 / ~ o d 3 B  

= k 0 6 ( p  - k ) .  

Let us denote generally by Op( f )  the operator corresponding by ( 8 b )  to a function 
f ;  by definition, Op( W,) = A. 

Now we prove that ( 2 ~ ) ~ ~  5 q.Ro(q, p )  d3q d3p is the Newton-Wigner operator QOp; 
that is, Op(q) = Qop. This one can expect from the proof by O’Connell and Wigner 
1281 that Qop is unique in fulfilling (QoP),(t) = (Qop)@(O) + r ( H ; ~ P o p ) , ,  similarly to 
our (32). 

We have 

(2.rr)F3 q(@l.Rdq, PW.) d3q d3p 

= T-’ {P513/’q exp[iq (MpB-5 ) l~ (5 )~ . (Mp5) (5” ) - ’  d35 d3q d3p 

q exp[iq ( U  - 5 ) ] 6 ( t ) @ ( u )  

where we have made the change of variable p H U := Mp&. 
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Introducing new variables y := ;(U + f ) ,  z := U - 6, let h(y ,  z)  be the bracketed 
expression in the integrand (46) in terms of y, z. Due to this expression’s symmetry 
in U and f ,  we have a h / a ~ ) , = ~ = O .  Integrating now over the q variables, we obtain 

(2.n)-3 q(@lNq, p)l@) d3q d3p 

- ( ( ~ ( Z ) ) ~ ( Y - ~ Z ) @ ( Y + ~ Z ) ~ ( Y ,  Z )  d3t d3y 

From our remarks at the end of section 3, it follows that the Newton-Wigner 
operator for spinless particles corresponds to a covariant position observable. This is 
not made altogether clear in the original paper by Newton and Wigner 1291. 

Other relevant observables are associated with the generators of the representation: 

a a 
OP a& a6 

K =ito- .  Jo ,= i -xg  Hop = to p o p =  5 

One of the typical properties of the ordinary Wigner function is that its marginals 
give the correct probabilities for finding the particle localised at a given point or with 
a given momentum. In the non-relativistic case, these properties come for free from 
our basic postulates of traciality and covariance. But here we do  not have an a priori 
reason for expecting that to happen, nor is it necessary for a consistent phase-space 
theory. 

In fact, we do have 

so the marginal with respect to q indeed gives the standard probability of finding a 
particle with the given momentum. But the analogous property is not true for the 
integral over p .  
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The standard formulation of the probability for locating the position of a particle 
is somewhat involved, so it may be worth recalling it. Let 4(q,  t )  be the spacetime 
wavefunction corresponding to @: 

exp[-i(tOt - 5 .  4)1@(5) d35/ t0 .  I,. 4(q ,  t )  = (2.rr)-3/2 

By definition, it satisfies the Klein-Gordon equation: 

Now, letting 

,y := Hz&#, := ( - A  + m2)'/44, 

and d,,(q, t )  := I,y(q, t ) I2 ,  one can check that d K ,  has the properties required to be 
interpreted as a probability density in configuration space: 

lR3 d,,(q, t )  d3q = 1 lR3 qdKG(q, f, d3q=(Qop)(f). 

The trouble with this d K ,  (as with its higher-spin counterparts) lies in the non-local 
properties pointed out by Hegerfeldt [30]. 

On the other hand, we can define a diflerent density function from the Wigner 
function W, corresponding to @: 

d(q, t ) : =  ( 2 ~ ) - ~  s,i W,(q - V I h ,  P) d3P. 

It is immediately clear, from the facts already proved, that 

jR3 4% t )  d3q = 1 IR3 q d(q, I) d'q = (Qo , ) ( r )  

but it follows from (44) that d is local (that is, its support does not grow or shrink 
supraluminally). 

The higher moments of dK, and d are of course different. In fact, one has 

( 9 ' )  " ' ( q 2 )  " 2 ( q 3 )  n 'dK~(4 ,  t )  d3q i,. 
( q ' ) " " ~ ( q 2 " ' ' ~ ( q 3 ~ X ' ' ~ d ( q ,  t )  d3q 

= Id 

= (( o:,, "I( Q&J " 2 (  Q&) " l ) (  1 )  (47) 

where (4') x n j  denotes the n,-fold twisted product q' x q' x . . . x 4'. The fact that dK, # d 
is related to (q ' )""  # ( q ' ) " ,  whereas, as we prove below, ( p ' ) " "  = ( p ' ) " .  We do not 
know, however, whether d is always non-negative. 

We argue that the rule expressed by (47) is a natural one. In effect, it is universally 
true that 

(2 .rr)- '  jR6fx( WA)(q, P I  W d q , p )  d3q d'p = ( f ( A ) ) ,  
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for an operator A, provided f“ is the rwisfed function corresponding to f. In the 
ordinary non-relativistic Moyal mechanics, as long as W, corresponds to a canonical 
coordinate, f” and f coincide. For examples of non-trivial twisted function computa- 
tions with the harmonic oscillator Hamiltonian and other important operators see [ 191. 

We turn our attention then to the twisted product. Its trikernel is given by 

L(q l ,p1 ;  qr ,p2;  q 3 , p J  =Tr[Slo(ql,pi)Ro(q2,p.)Slo(q, ,~~)1 
c 

x exp{i[q, (m,,g- 6 )  + 42 * ( M P 2 M P I S -  M p , 5 )  + q 3  * (S-MpzMp15)1)  

x ~ ( M , , M p , M , , 5 - 5 )  d35. (48) 

The equation M , , h . I , , M p I ~  = 5 has the unique solution: 

t=A({p2p3}pl -{p3pI}P2+{PIp2}Pl) 

where 

A = ({PlPZY+ {P?P3Y+ I P d  - 2{PIP2)IPZP3~{P7Pl~) 
For simplicity, we abbreviate a = { p 2 p 3 } ,  b = {plpl), c = { p l p 2 } .  Substituting in (48), we 
obtain, after a laborious computation, 

L(q, ,p , ;  42,pz; 43,P’) 

- - 2 6 ~ 1 3 / ’  ( a b c ) ,  ‘exp(2iA[bql - p 2 + c q z  * p 7 + a q 3  - p I  

- cq1 * P3 - aq2 * PI - bq3 * P21). 

Using (30) and (31), one verifies directly that this trikernel has the desired equivariance 
property: 

L ( g . u , g .  t ‘ , g . w ) = L ( u , L ’ , w )  for g E G, U, L‘, w E G. 
In the non-relativistic limit, a, b, c, A+ 1. Thus we recover the trikernel for the 

non-relativistic twisted product: 

L(qI ,p l ;  9?,p2;  q3,p7)=2‘exp[2i(qI - P ~ + ~ ~ . P ~ + ~ ~ . P ~ - ~ I  . p 3 - q 2  ’ ~ ~ - 9 3  - P ~ ) I  

Let f ( p )  be a function of p alone. Then if h (q ,p)  = p i  x f ( p ) ,  we find that 

h(q l ,p l )  = r-‘ lR,- (abc)’ ?AI7 ‘pif(p?)  exp{-2iA[apl ( q 2 - q 3 )  

Let us illustrate how twisted products may be computed by two simple examples. 

+ b P ’ . ( q , - q i ) + ~ ~ , . ( q i - q , ) l }  d’q2d3p2d1q3d3pl 

= r-l (abc)’ ’A” ‘ p < f (  p7)S(  bp2 - upi)  

x exp{-2iA[(apl - cp, 1 a q2 - ( bp2 - cp3) ql]} d’q, d7p2 d’p, 
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= P ! f ( P I )  

as expected. Takingf(p)  = ( p ’ ) ” - l  confirms our previous assertion that (p”” = ( p ’ ) “ .  
Furthermore, if k( q, p )  = qJ x f (  p ) ,  a similar calculation gives 

using the change of variable r = p 3  - bp, and  noting that r = 0 only when p ,  = p1 . We 
may summarise these results as 

In an  analogous manner it is easy to show that 
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6. Quantised observables 

We now ‘quantise’ the main observables in the Wigner realisation for j > 0. As before, 
we write Hop, Pop, Jop, Kopr Qopr Xop for the operators corresponding to the coordin- 

First we check that Op(f( p ) )  =f(Pop), where Pop is of course the multiplication 
operator 5. To simplify the notation, summation over repeated indices of the Wigner 
spinors is to be understood: 

ates h, ~ , i ,  k, 4, x. 

( @ ‘ V ( P ) R j ( X ,  P, n)lq) 

= Z3 I 6 ( 5 ) { ~ 5 ) ~ ’ ~  exp[ix. ( M p 6 - 5 ) l f ( ~ ) B ’ ( R ( p ,  5))A’(n) 

= I 6 , ( 5 ) f ( 5 ) @ ( 5 )  d p ( 5 )  = (@’V(Pop)lW. 

It can be seen that the calculations made in [lo] for pure functions of spin are 
essentially unchanged here and we obtain 

O p ( [ j ( j +  1)I”2n)  =Sop 

where Sop is the angular momentum generator for spin j .  Moreover, it is obvious that 
if we quantise [j(j+ ~ ) ] ” ~ n f ( p )  we get Sopf(Pop) = ~ ( P ~ , ) S , , .  

(@lXfl,(X,P, n)lW 

Now we compute Xop: 

= 23 I 6 ( 5 ) { ~ 5 1 ~ ” x  exp[ix. ( M f 5 - 5 ) l f ( ~ ) 3 ’ ( R ( p ,  5))A’(n)  

We now change variables as in (46): first p -  U := M&, then y := $(U + g), z := U - 5. 
Integrating over the q and n variables and then integrating by parts, (49) yields 

i IR3 [%Y - b ) W + f z ) h ( y ,  Z ) ~ ’ ( R ‘ ( Y ,  z))9’(Rf’(y, Z ) ) I I , = ~  d3y 

where h(y ,  z )  is the same function as before and R’, R“ denote, respectively, R ( p ,  5) 
and R(Mp5 ,  p )  as functions of y ,  z. The explicit expression for R ( p ,  6) is 

(to+ m ) ( h  + m )  - p  5 -io * ( 5  X P )  
R ( p 7  [ 2 ( 5 ° + m ) ( h + m ) ( m 2 - ( 5 p ) ) l ” 2  
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We have then for p = 5: 
i u . ( ( x u )  

R(P,  5) = R(Mp5, P) = 1-4  m ( t o +  m )  

and 

i ( S o p x y )  z 
2 m ( y O + m )  ’ 9 J ( R ‘ ( y ,  2 ) )  = 9 ’ ( R ” ( y ,  z ) )  = 1 -- 

We conclude that 

Now ( S O p x  c ) / m ( t o +  m )  is the ‘quantisation’ of ( s  x p ) / m ( h  + m ) ,  where 
[ j ( j +  1)]”2n. It follows that 

Qop = i($ - 6) 
for all j :  the Newton-Wigner operator has a form which is independent of j (in 

S =  

the 
Wigner realisation). This often forgotten fact has been recalled recently by Chakrabarti 
r311. 

Routine calculations now establish 

7. The phase-space formalism for Dirac particles 

We begin by fixing some notation. In the spirit of [32], we think of 4-vectors y = ( y o ,  y )  
as the corresponding matrices yoZ + y  . U, and freely multiply them: y , y z  = 

( y y y i  + y ,  y2, yyy, + y$,  + iy, x y 2 ) .  This leads to a remarkable simplification in several 
formulae. As 

we shall write simply 

(We shall not have occasion to use the other square roots of 5.) Our Dirac matrices are 
Y o = ( I  0 1  o) Y=(: -00) 

i.e. we choose the chiral representation. Define 

It is well known and easy to check that, if D‘.’ denotes the standard finite- 
dimensional representations of SL(2, C) and 



Relativistic quantum kinematics 929 

with E SL(2, e ) ,  then 
s(i)fS(i)-l =M 

The method of relating Dirac’s and Wigner’s realisations for spin-half particles is 
also well known. We shall proceed from the latter to the former. Consider the 
representation space %z2*+:= C2@L2(HL, dp(5)) .  We shall introduce a Hilbert space &‘z2,+ of 4-spinors ismorphic to %‘z2,+. If @ E 2fz2,+, define 

We have then 

If @, @’E 2 f : 2 3 + ,  we abbreviate 6(5) 9 @’([) = ~ , ( 5 ) @ ~ ( 5 ) + ; i 2 ( 5 ) @ ~ ( 5 ) .  Then their 
inner product is given by 

If we now set 

we get 

(YrJ’P’) := 1 ‘@( t )yo ’P ’ (€ )  dp(5 )  =(@I@’). 
H:, 

(Again we sum over the repeated indices of the spinors.) The Hilbert space &:’,+ of 
4-spinors of the form (51), with this inner product, is then unitarily equivalent to 2fx2,+. 

Now, is the space of solutions of the Dirac equation. In effect, from (50) 
we see that 

that is, (&- m)V = 0, the Dirac equation in momentum space. 

given isomorphism T :  Xx’.’ --* &223t into 
The ‘basis’ { @ k . * , , 2 ( c ) }  = { k o S ( t  - k ) ( b ) ,  k o S ( f  - k ) ( y ) :  k E R3} transforms under the 

and so (Vk,rlVk , r )  = k 0 6 ( k  - k’ )S , ,  . One naturally uses this basis to compute traces 
in  &:2.+ 

On &x2.+ we consider the representation VD:= T U ,  zT-l.  Explicitly 
[ VD(a, i )V] (5 )  = e x p [ - i ( a 5 ) ] S ( , ~ ) ~ . ( A - ’ 5 ) .  ( 5 2 )  
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We have recovered the usual expression for the relativistic invariance of the Dirac 
equation, in the chiral representation. (Of course, we can make a similarity transforma- 
tion to recover any other representation we like.) Note that ( 5 2 )  can be considered 
as a (reducible) representation on the whole space of 4-spinors; thus defined, VD 
commutes with the projector PD = (&+ m ) / 2 m  on the subspace &z2%+, and preserves 
the form of spinors given by (50 )  and ( 5 1 ) .  

A well known result in representation theory establishes that a representation leaves 
invariant an inner product given by an associated Hermitian matrix (here y o )  if and 
only if it is equivalent to its contragredient conjugate representation. This is the reason 
for choosing the representation space of D”2300 Dos’”, which is reduced to &fn/’,+ by 
our definitions. 

We can now define the Stratonovich-Weyl quantiser for the (positive-energy) Dirac 
particles RD(x ,  p ,  nt as nD(u) := T c I l 2 (  U )  T I .  We compute this by recalling that 
D ’ / ~ , O ( ~ )  = D O . ’ ! ~ ( R )  = a ’ l 2 ( ~ )  for R E  su(2): 

P, n)91(5) 
= 23{P5)3’2  exP[ix ’ (MpS-S) lS(L, )S(LF’LpL~pl f )A~(n)  

x S( LL;’fLp’LMpf)S( L&W( M,5) 

= 23{P03’2  exP[ix ’ ( Mpg - &)Is( L ~ L L ; ~ ~ ) A D ( ~  )s( LL;’EL,’)*( Mp() 
( 5 3 a )  

where AD(n) :=  (A”’OA1’’)(n). In particular 

From these particular operators (53b)  one recovers the whole quantiser by means of 
the covariance rule, using the usual matrix functions S which express the relativistic 
invariance of the Dirac equation; note that the formulae ( 5 3 )  are valid for any choice 
of the y matrices. Note also that ~ D ( u ) P D  = PDRD(u).  

The Wigner function corresponding to a Dirac wavefunction 9 (in momentum 
space) is again simply the expected value of the quantiser a,: 

For instance, if 9 is the plane wave Y k , l / 2 ,  we get 

Wk,1/2(X9 P, n, 
( k / m ) “ ?  0 

= i k o S ( p  - k ) ( (  1 0 ) ( i / m ) ” 2  (IO)(k/m)”’)( 
( E l m ) ‘  a 

= +( 1 + \ /?n,)k”S( p - k ) .  
Analogously, W L , - I , Z ( ~ ,  p ,  n )  = f ( 1  - 8 n , ) k ” S ( p  - k ) .  

In this paper we have treated only positive-energy particles. To repeat the foregoing 
development for negative-energy particles, which unfolds in a completely parallel way, 
one starts from the coadjoint orbit Oms- determined by replacing h = ( m ’ t p  - p ) ” I  by 
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h = - ( m 2 + p .  p ) ” ” .  In particular, we remark that the negative-energy solutions of the 
Dirac equation arise in a similar manner. We obtain a Stratonovich- Weyl quantiser 
with values which are operatorsAon the representation space aP;’.-, and an isomorphism 
of this space with a subspace aPx’.- of 4-spinors, corresponding to (50); the analogue 
of (53 )  gives rise to the desired quantiser for the space of negative-energy solutions. 
We leave the details to the reader. 

As another useful exercise, we point out that, by putting back the c in our formulae, 
the whole formulation reduces to the Galilean one with U = mc2 for the internal energy 
in the non-relativistic limit. 

8. Concluding remarks 

As a rule of thumb, contributions in the physical and mathematical literature have 
respectively tried to ‘make relativistic’ two different elements of phase-space quantum 
mechanics. On the physical side, it so happens that ‘relativistic Wigner functions’ have 
been sporadically employed for some time [33]; they are introduced by formally 
extending Wigner’s definition [3] to Minkowskian phase spaces. On the mathematical 
side, the Weyl quantisation rule is perceived as the basic subject for generalisation 
and, besides the papers we comment on below, there has also been a busy Japanese 
school [34] trying to establish self-adjointness of some classes of operators obtained 
by formal application of the Weyl correspondence [2] in the relativistic context. Our 
carefully systematic generalisation allows at least a preliminary assessment of the worth 
of such attempts. In general, it would seem that the other elements of a proper Moyal 
formulation, such as the twisted product with its tracial property, cannot be appended 
to them; and no actual calculations in the Moyal spirit are done. 

The basic definition for ‘relativistic Wigner functions’ from which most authors 
start is generally 

6 ( x  + v )&(x  - U )  exp[2i( pu)]  d4v N@(x ,  p )  oc 

where &, the Fourier transform of @, is a wavefunction (or field) satisfying the 
Klein-Gordon equation. This is immediately seen to be a simple-minded generalisation 
of (19). Some fail to note that such an object must then satisfy the equation 

( (  p p )  + m’ + 0 x )  NQ = 0 
and so, unless Q, is a plane wave, in which case N ,  would equal our W,, NQ is not 
supported on the mass shell. In practice, this means that this ‘transport approach’ to 
relativistic field theory is of an approximate nature from the beginning, which we 
consider unwarranted. 

In the more mathematical vein, there have been some recent attempts to generalise 
‘Weyl correspondences’ to the relativistic context (always in the spinless case). Ali 
and Antoine [35] purport to have a recipe for a relativistic Weyl transform for the 
( 1  + 1) Poincari group. Their approach, for all its mathematical sophistication, stems 
from the ‘old’ form of the Weyl rule, which is notoriously difficult to generalise, instead 
of the newer one afforded by the Grossmann-Royer operators. They obtain results 
different from ours. The Unterbergers [36] come nearer to our point of view, as they 
apply covariance and the heuristic parity rule, which is similar to ours but without the 
factor {p5>”2 .  Of course, the resulting correspondence rule has no tracial property; 
this is the reason why they have to define two symbols, a ‘passive’ and an ‘active’ one. 
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We want to emphasise that the bridge between the coadjoint orbits and the 
representation spaces, given by our Stratonovich- Weyl quantiser, must be carefully 
constructed in order to ensure the physical equivalence with the standard quantum 
theory. In this respect we depart from the de‘marche of the school-creating papers by 
Bayen er a1 [37] that give rise to a bewildering variety of ‘twisted products’ of little 
use in physics. What all the reviewed attempts have in common is a methodology in 
which an element of the ordinary Moyal formulation is detached from the rest and 
imputed an unrestricted power and significance in the generalisation; we have shown, 
nevertheless, that a procedure is available which combines harmoniously all the basic 
elements of the Moyal approach. 

Besides [ lo ,  111, there is not much precedent, then, in the literature for our 
endeavour. We want to point out, however, the formal analogy between our work and 
the ‘discrete quantum mechanics’ formalism in [38]. Also, the idea to start quantisation 
from elementary classical systems in our sense is present in the interesting paper [39]. 

Summarising, we have provided the foundations for the phase-space formulation 
of relativistic quantum theory. There is much work to do before the present approach 
can show its usefulness as an established method in elementary particle physics. To 
begin with, some obviously unfinished business remains, such as quantisation of 
observables in the Dirac case, constructions of sw quantisers for higher-spin wave 
equations, treatment of the orbits corresponding to massless particles, and so on. To 
include treatments of all these topics would have excessively lengthened a paper already 
not very brief. 

The old discussion about localisation and position observables, which has some- 
times been conducted at an appalling level, can very well be clarified by employing 
our one-to-one quantisation-dequantisation rule: proposed position operators can 
always be dequantised for examination of their reasonableness at the classical level, 
and vice versa. We plan to develop in a forthcoming paper how interactions can be 
introduced and the application of our theory in simplifying perturbative QED. Finally, 
our proof of existence and uniqueness of the quantiser is specific to the PoincarC 
group. An interesting mathematical question concerns the realisation of the 
Stratonovich- Weyl postulates for general classes of groups. 
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